Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Training Course
Edge AI involves deploying artificial intelligence models directly onto devices and machines at the network's edge, enabling real-time decision-making with minimal delay.
This instructor-led, live training (available online or on-site) is designed for advanced embedded and IoT professionals who aim to implement AI-driven logic and control systems in manufacturing settings where speed, reliability, and offline operation are crucial.
By the end of this training, participants will be able to:
- Grasp the architecture and advantages of edge AI systems.
- Develop and optimize AI models for deployment on embedded devices.
- Utilize tools such as TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Extensive exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Edge AI in Industrial Settings
- Why edge computing matters in manufacturing
- Comparison with cloud-based AI
- Use cases in vision, predictive maintenance, and control
Hardware Platforms and Device-Level Constraints
- Overview of common edge hardware (Raspberry Pi, NVIDIA Jetson, Intel NUC)
- Processing, memory, and power considerations
- Selecting the right platform for application type
Model Development and Optimization for Edge
- Model compression, pruning, and quantization techniques
- Using TensorFlow Lite and ONNX for embedded deployment
- Balancing accuracy vs. speed in constrained environments
Computer Vision and Sensor Fusion at the Edge
- Edge-based visual inspection and monitoring
- Integrating data from multiple sensors (vibration, temperature, cameras)
- Real-time anomaly detection with Edge Impulse
Communication and Data Exchange
- Using MQTT for industrial messaging
- Integrating with SCADA, OPC-UA, and PLC systems
- Security and resilience in edge communications
Deployment and Field Testing
- Packaging and deploying models on edge devices
- Monitoring performance and managing updates
- Case study: real-time decision loop with local actuation
Scaling and Maintenance of Edge AI Systems
- Edge device management strategies
- Remote updates and model retraining cycles
- Lifecycle considerations for industrial-grade deployment
Summary and Next Steps
Requirements
- An understanding of embedded systems or IoT architectures
- Experience with Python or C/C++ programming
- Familiarity with machine learning model development
Audience
- Embedded developers
- Industrial IoT teams
Open Training Courses require 5+ participants.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Training Course - Booking
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level Training Course - Enquiry
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Related Courses
Advanced Edge AI Techniques
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at advanced-level AI practitioners, researchers, and developers who wish to master the latest advancements in Edge AI, optimize their AI models for edge deployment, and explore specialized applications across various industries.
By the end of this training, participants will be able to:
- Explore advanced techniques in Edge AI model development and optimization.
- Implement cutting-edge strategies for deploying AI models on edge devices.
- Utilize specialized tools and frameworks for advanced Edge AI applications.
- Optimize performance and efficiency of Edge AI solutions.
- Explore innovative use cases and emerging trends in Edge AI.
- Address advanced ethical and security considerations in Edge AI deployments.
Building AI Solutions on the Edge
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at intermediate-level developers, data scientists, and tech enthusiasts who wish to gain practical skills in deploying AI models on edge devices for various applications.
By the end of this training, participants will be able to:
- Understand the principles of Edge AI and its benefits.
- Set up and configure the edge computing environment.
- Develop, train, and optimize AI models for edge deployment.
- Implement practical AI solutions on edge devices.
- Evaluate and improve the performance of edge-deployed models.
- Address ethical and security considerations in Edge AI applications.
AI-Powered Predictive Maintenance for Industrial Systems
14 HoursAI-powered predictive maintenance leverages machine learning and data analytics to predict equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enhancing uptime, reducing costs, and extending the lifespan of assets.
This instructor-led, live training (online or onsite) is designed for intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance approaches.
- Gather and structure machine data for AI-powered analysis.
- Apply machine learning models to identify anomalies and predict failures.
- Implement comprehensive workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Practical exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 HoursAI for Process Optimization involves the use of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing processes.
This instructor-led, live training (available online or on-site) is designed for intermediate-level manufacturing professionals who aim to apply AI techniques to streamline operations, minimize downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Grasp AI concepts pertinent to manufacturing optimization.
- Gather and prepare production data for analysis.
- Implement machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to facilitate data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Extensive exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 HoursAI for Quality Control involves the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (available online or onsite) is designed for quality professionals at beginner to intermediate levels who want to apply AI tools to automate inspections and enhance product quality in manufacturing settings.
By the end of this training, participants will be able to:
- Understand how AI is utilized in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Numerous exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 HoursAI in Supply Chain and Manufacturing Logistics involves the use of predictive analytics, machine learning, and automation to optimize inventory management, routing, and demand forecasting.
This instructor-led, live training (available online or onsite) is designed for intermediate-level supply chain professionals who want to leverage AI-driven tools to improve logistics performance, achieve accurate demand forecasting, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is utilized across various logistics and supply chain activities.
- Apply machine learning models for demand forecasting and inventory management.
- Analyze and optimize transport routes using AI-based techniques.
- Automate decision-making processes in warehouses and fulfillment centers.
Format of the Course
- Interactive lectures and discussions.
- Numerous exercises and practical activities.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 HoursAI in Smart Factories involves the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (available online or on-site) is designed for beginner-level decision-makers and technical leads who want to gain a strategic and practical understanding of how AI can be utilized in smart factory environments.
By the end of this training, participants will be able to:
- Grasp the fundamental principles of AI and machine learning.
- Recognize key AI applications in manufacturing and automation.
- Explore how AI can support predictive maintenance, quality control, and process optimization.
- Assess the steps required to launch AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 HoursAI Use Case Implementation is a practical, project-focused approach to applying machine learning, computer vision, and data analytics to address real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (available online or on-site) is designed for intermediate-level cross-functional teams who want to collaboratively implement AI use cases that align with their operational goals and gain hands-on experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Identify and define practical AI use cases from operations, quality, or maintenance areas.
- Collaborate effectively across different roles to develop machine learning solutions.
- Manage, clean, and analyze a variety of industrial datasets.
- Present a functional prototype of an AI-enabled solution based on a chosen use case.
Format of the Course
- Interactive lectures and discussions.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Digital Twins with AI and Real-Time Data
21 HoursDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is designed for intermediate-level professionals who aim to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Utilize simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Numerous exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI: From Concept to Implementation
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at intermediate-level developers and IT professionals who wish to gain a comprehensive understanding of Edge AI from concept to practical implementation, including setup and deployment.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of Edge AI.
- Set up and configure Edge AI environments.
- Develop, train, and optimize Edge AI models.
- Deploy and manage Edge AI applications.
- Integrate Edge AI with existing systems and workflows.
- Address ethical considerations and best practices in Edge AI implementation.
Edge AI for Healthcare
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at intermediate-level healthcare professionals, biomedical engineers, and AI developers who wish to leverage Edge AI for innovative healthcare solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in healthcare.
- Develop and deploy AI models on edge devices for healthcare applications.
- Implement Edge AI solutions in wearable devices and diagnostic tools.
- Design and deploy patient monitoring systems using Edge AI.
- Address ethical and regulatory considerations in healthcare AI applications.
Edge AI for IoT Applications
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at intermediate-level developers, system architects, and industry professionals who wish to leverage Edge AI for enhancing IoT applications with intelligent data processing and analytics capabilities.
By the end of this training, participants will be able to:
- Understand the fundamentals of Edge AI and its application in IoT.
- Set up and configure Edge AI environments for IoT devices.
- Develop and deploy AI models on edge devices for IoT applications.
- Implement real-time data processing and decision-making in IoT systems.
- Integrate Edge AI with various IoT protocols and platforms.
- Address ethical considerations and best practices in Edge AI for IoT.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 HoursIndustrial computer vision with AI is revolutionizing the way manufacturers and QA teams identify surface defects, verify part compliance, and automate visual inspection processes.
This instructor-led, live training (available online or on-site) is designed for intermediate to advanced-level QA teams, automation engineers, and developers who are looking to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Grasp the architecture and components of industrial vision systems.
- Develop AI models for visual defect detection using deep learning.
- Integrate real-time inspection workflows with industrial cameras and devices.
- Deploy and optimize AI-driven inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Numerous exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Edge AI
14 HoursThis instructor-led, live training in Slovakia (online or onsite) is aimed at beginner-level developers and IT professionals who wish to understand the fundamentals of Edge AI and its introductory applications.
By the end of this training, participants will be able to:
- Understand the basic concepts and architecture of Edge AI.
- Set up and configure Edge AI environments.
- Develop and deploy simple Edge AI applications.
- Identify and understand the use cases and benefits of Edge AI.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control
21 HoursSmart Robotics involves the integration of artificial intelligence into robotic systems to enhance perception, decision-making, and autonomous control.
This instructor-led, live training (available online or on-site) is designed for advanced-level robotics engineers, systems integrators, and automation leaders who aim to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for both collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision-making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lectures and discussions.
- Numerous exercises and practice sessions.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.